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Abstract 
In this paper we start from a critical analysis of the fundamental problems of the parallel calculus in linear 

structures and of their extension to the partial solutions obtained with non-linear architectures. Then, we present shortly 
a new dynamic architecture able to solve the limitations of the previous architectures through an automatic re- 
definition of the topology. This architecture is applied to real-time recognition of particle tracks in high-energy 

accelerators. 
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1. The theory 

The design of an effectively parallel computation 
architecture is actually the main problem to be solved, in 
order to perform efficient complex pattern recognition 
tasks. This limitation has its best mathematical formula- 
tion in the classical theorems discussed in Minsky and 
Papert Perceptrons book [l]. Essentially, these theorems 
demonstrate the mathematical impossibility of designing 
truly parallel architectures for solving very simple recog- 
nition problems (e.g., “parity” problem or “xor” 
problem). In fact, to solve these problems with a linear 
perceptron, it is necessary to have at least one computa- 
tion unit (e.g., a “neuron” or a set of “neurons” in the 
hidden layer of a neural architecture) with the whole 
dimensionality of the input as its computation domain. 

Generally, the researchers followed two different ap- 
proaches for dealing with this type of problems: 

~ The use of clussical AI strategies with objects al- 
ready defined by the programmer (i.e. object oriented 
languages) [2]. 

- The use of a connectionist approach, i.e. a neural 

architecture (e.g., “backpropagation”) with two main dif- 
ferences with respect to the classical linear perceptron: (a) 
the use of a non-linear transfer function for each neuron 
in order to generate higher-order input correlations [3]; 
and (b) the total connectivity among the neurons on the 
different layers. 

Notice that in a connectionist architecture the limita- 
tions of the linear preceptron are not solved in principle 

because the total connectivity implies that each neuron of 
the hidden layer “reads” the whole input. In this way, the 
computation is not truly parallel. The only improvement 
is that this architecture can solve non-linearly separable 
problems such as the “xor problem”. However, no theo- 
rem exists for granting the convergence of the learning 
procedure in a finite time. In the applications a long time 
for the convergence of the learning procedure is thus 
generally required. 
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In this paper we propose another strategy to solve the 
problem of parallel computation. This strategy is based 
on a dynamic definition of the net topology that shows 
its effectiveness for problems of particle track recognition 
in high-energy physics [4,5]. In this way, we can preserve 
the linear architecture of the net like in the classic perce- 
ptron, but with a partial and dynamic connectivity so to 
overcome the intrinsic limitations of the geometric 
perceptron. Namely, the computation is truly parallel 
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because of the partial connectivity, but the net topol- 
ogy is always the optimal one because of its dynamic 

redefinition on each single input pattern. For these 

properties, we call this new architecture dynnmic~ prr- 

ceptrorl. 

To synthesize the main differences among: (1) the clas- 
sic geometric perceptron, (2) the back-propagation algo- 
rithm and (3) the dynamic perceptron. it is sufficient to 
consider the following three schemes: 

(i) Geometric perceptron: Fixed and partial input cor- 
relations for the single neuron are defined according to 
the following (see Fig. 1): 

i 

N 1 Y(X)= c xi-x,+, > 0 , 1 (1) i= I 
where [r > fI] = 1 if .x > 0, and [.Y > fI] = 0 if .y 5 0. 

(ii) Back propagation: Fixed md total input correla- 
tions for the single neuron are defined according to the 
following (see Fig. 2): 

where qj is the weight between the jth hidden unit and 
the kth output unit; U’ji is the weight between the ith 
input unit and the jth hidden unit; xi is the vector forcing 
directly the input units, Nj is the number of inputs for 
each hidden unit; Nk is the number of inputs for each 
output unit: ,f‘ is the sigmoid function defined by 
f(s) = l/( 1 +e-“). The correlation is total because of the 
following simple Taylor expansion, where all the prod- 
ucts among all the input neurons ?Ci,.~i,..Y,,, ,. 
i.i,.i2, .,_ = 1, . . . ,N occur: 

(iii) Dynamic perceptron: Dynamic and partia/ correla- 
tions. bounded by an upper limit, are defined for the 
single neuron. By “dynamic” connectivity we mean 
a time-varying connectivity of the neurons of the net. 
Namely, the connectivity changes for each input pattern 
so to give the optimal topology to “read” it, according to 
the following (see Fig. 3): 

P(X)=[~,pilX)>0]. (4) 

where the input supports SDi(X) of the computation unit 
11, (i.e., the part of the whole input X used as input of each 
p,) are recursively constructed for each input pattern X. 

XI x2... 

Fig. I. Order IWO correlations m the geometric perceptron 

XI x2 . . . 1 
Fig. 2. Total correlation between hidden and input layers for the 

back-propagation. 

Fig. 3. Dynamic and partial correlations for the dynamic percep- 

tron. The connectivity is free to change in each box delimiting 

a upper limit of order two to the correlations. 
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Fig. 4. Antineutron star after the dynamic redefinition of the supports to determine the connected or uniform parts of the track. The little 
squares indicated by the arrows show some of these supports redefined on connected areas of the input pattern. 

so to determine connected or uniform parts of the single interactions, in order to extract events in which a “star” 

input (see Fig. 4). indicating an annihilation of an antineutron is present. 

2. An application 

The “FENICE” detector, installed at the upgraded 

storage ring ADONE from ‘89 to ‘93, is a non-magnetic 
detector and consists of a complex array of plastic scinti- 
llators, iron sheets and streamer tubes. It is optimized to 
detect the process e+e- -+ nii and consequently to 
measure the neutron electromagnetic form factors. 
A concrete shield covered by an active veto system is 
added in order to reduce the cosmic rays background. 
Due to the very small cross section, the expected rate is of 
the order of l-lo6 triggers at the luminosities of 
=lO29 cm-2s-1. 

Three types of data were submitted to the dynamic 
perceptron in order to test its efficiency in recognizing 
different classes of events: raw data; Monte Carlo events; 
real events. 

Raw data: They consist of topological information 
obtained only from the streamer tubes (ADC, TDC, . 
give other topological information, but with a more diffi- 
cult utilization) and concerning events surviving a first 
reduction filter aimed to reduce the presence of cosmic 
rays. The recognition task consists essentially here 
in distinguishing collinear and non-collinear charged 
events - occurring in the proximity of the inter- 
action zone - from the background events of e*-gas 

Monte Carlo events: They simulate the reaction 

e+e- + nii at different energies from 1920 to 3100 MeV. 
Reaf events: They consist in samples of real efe- -+ nii 

annihilation events obtained through human scanning. 
In these samples, events are accepted only if they are 
judged as satisfying the criteria for a “star” recognition in 
the event by at least 3 over 6 human scanners. The results 
obtained by the dynamic perceptron for all these tasks of 
complex pattern recognition are summarized in Table 1. 

Notice that the class of Monto Carlo rejected events 
( z 15% of the total) is composed as follows: 10% quasi- 
collinear events; 5% events with too few points. Finally, 
the efficiency of the new architecture is enhanced by the 
reduction of calculation time. The above results is ob- 
tained in real time by software (15 Hz of recognition on 
300 x 300 input points on a 4 Mips machine). 

Table 1 
Summary of the results obtained by the dynamic perceptron 

Events Accepted 
(%) 

Rejected 
(%) 

Monte Carlo (1.000 events) 
Real data ( e 400 events at 
x 3.1 GeV) 

Raw data ( z 100.000 events) 

e 85% Z 1.5% 

Z 90% 5 10% 
40-50% 50-60% 
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3. Conclusions: The advantages of the method 

The dynamic perceptron displays the following ad- 

vantages with respect to any other neural network archi- 
tecture designed till now: 

- It uses only the topological information (no ADC, 
flight time, etc.). 

-- It allows a complete paraMization of the algorithm. 
-- It makes independent the net structure from the 

apparatus dimension (i.e., the net rearranges automati- 
cally itself on any change of the apparatus dimensions). 

- It allows the treatment of any input dimension in real 
time by sofiware (15 Hz of recognition on 300 x 300 input 

points on a 4 Mips machine). 
- It allows an easy hardware implemenrarion for 

the exceptional architectural simplicity of the net (actual- 
ly the hardware implementation is in development). 
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